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1. INTRODUCTION 

Despite the many well-known and documented deficiencies, the species sensitivity 

distribution (SSD) remains a cornerstone of modern ecotoxicological practice. SSDs are 

typically used to establish concentrations of toxicants and pollutants in waterbodies that are 

protective of some nominally high fraction of all potentially affected species. 

Being a probability model for toxicity data, the SSD approach is necessarily statistical 

and its implementation can be mathematically and computationally demanding. Unlike some 

other branches of science, there are no guiding principles or axiomatic theorems in 

ecotoxicology that establish the foundations of the SSD paradigm. This means that more 

assumptions have to be made than would otherwise be the case. For example, it has to be 

assumed that our toxicity data represent a random sample from the larger population of all 

toxicity values when we know this to be patently false. Or we must assume that the 

underlying probability distribution for toxicity values is of a particular theoretical form such 

as the log-normal or log-logistic distribution when in fact we have no idea what the true 

functional form of this distribution is. Compounding these problems is the omnipotent and 

vexing issue of pathologically small sample sizes. 

These are serious drawbacks and certainly call into question the legitimacy of SSD 

modelling. However, ecotoxicologists are generally agreed that, despite the problems, the 

SSD methodology is the best we currently have and is preferable to the so-called assessment 

factor (AF) approach that it displaced some 25-30 years ago. 



In this note, we introduce the gamma-generated logistic distribution (ggLogis) as a new 

candidate SSD model. The idea of generalising standard statistical distributions is not new. 

For example, Mudholkar and Srivastava (1993) introduced the exponentiated Weibull 

distribution to analyse failure rate data while Gupta et al. (1998) proposed a generalization of 

the standard exponential distribution. A class of generalised distributions known as beta and 

gamma-generated distributions was introduced by Zografos and Balakrishnan (2009). The 

first application of this method using the standard logistic distribution appears to be due to 

Castellares et al. (2015) who provided details of many of its mathematical and statistical 

properties. As far as we are aware, these methods of generalising existing distributions have 

not previously been used in the context of SSD modelling. 

The standard logistic distribution is often used in ecotoxicology as an SSD. Because it is 

symmetrical and distributed over the entire real line, the logistic SSD is most often applied to 

log-transformed toxicity data (meaning the untransformed toxicity data are assumed to follow 

a log-logistic distribution) 

The logistic distribution was also favoured by virtue of the following: 

• parameter estimation is relatively straightforward; 

• it has a closed-form expression for the cumulative distribution function (cdf); 

• it admits a variety of shapes. 

In the remainder of this note we provide mathematical details of the ggLogis 

distribution including its pdf, cdf, moments, and MLE equations. We illustrate the use of the 

ggLogis distribution as an SSD using the R statistical computing software and compare HCx 

estimates with those obtained using more conventional SSDs and software tools. Importantly, 

we show how standard errors and confidence intervals can be obtained without the need to 

resort to computationally-intensive resampling techniques. 

2. MATHEMATIAL AND STATISTICAL PROPERTIES OF THE 
ggLogis DISTRIBUTION 

We commence with the definition of a gamma-generated distribution. Let the cdf of 

the root distribution be ( );F x Θ  and let U be a gamma random variable having shape 

parameter a > 0 and pdf 
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To obtain the gamma-generated logistic distribution, we need to replace ( );XF ⋅ Θ in 

Equation 1 with the cdf for the standard logistic distribution (Equation 2). 
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where ( , )zξΓ  is the incomplete gamma function given by Equation 4. 
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Differentiating the pdf for the gamma-generated logistic distribution with respect to y 

we obtain the pdf : 
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Furthermore, ( ); , ,Yg y a µ σ can be expressed as: 
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where ( ; )Yg y Θ  is the pdf corresponding to ( ; )YG y Θ .  

The ggLogis distribution given by Equation 5 can generate a variety of shapes. Of 

particular relevance to ecotoxicology and SSD modelling is the ability to generate ‘fat’ left-

tail distributions. (Figure 1). 
 

3. MOMENTS OF THE ggLogis DISTRIBUTION 

For a random variable Y having pdf given by Equation 6, the kth raw moment is: 
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Substituting ( )ln 1 ;YZ F y= − − Θ    in Equation 7 we obtain: 

 

Figure 1. Shapes of the ggLogis distribution for a selection of parameter combinations. 

 

10− 6− 2− 2 6 10
0

0.2

0.4



( )

( ){ }
1 1

1

1 1
( )

           1

k
k z a z

kz
Z

E Y F e z e dz
a

E F e

∞ − − − −

−∞

− −

   = −   Γ

 = − 

∫
    (8) 

That is, the kth raw moment of Y can be expressed as the expectation of the kth power 

of ( )1 1 ZF e− − −  .  

where Z has a gamma(a,1) pdf. In our case, ( )F   is the logistic cdf which, on substitution 

into Equation 8 yields: 

 

( ) 1

0

1 ln 1
( )

k
k z a zE Y e z e dz

a
∞ − −   = −   Γ ∫     (9)  

 

Equation 9 is not particularly useful for method of moments parameter estimation and 

so we next discuss parameter estimation using maximum likelihood. 

4. MAXIMUM LIKELIHOOD ESTIMATION FOR THE ggLogis 
DISTRIBUTION 

The log-likelihood function for the ggLogis distribution is given by Equations 10(a)-(c). 
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 and ( )Ψ ⋅  is the digamma function. 



There is no explicit solution to the system of non-linear equations 10(a)-(c) and these 

must be solved numerically. We demonstrate how this is accomplished using the optim 

package in R with the use of an example. 

EXAMPLE – PFOS DATA 

The data for this example are given in Table 1 and Figure 2. 

The estimated HC5 from a log-logistic distribution fitted to the data is 1.05. 

Table 1. PFOS toxicity data. 

Species Concentration 
Danio rerio 0.2936 
Oryzias latipes  4 
Enallagma cyathigerum 7.95 
Daphnia magna 8 
Xiphorus helleri 40 
Chironomus tentans 49.2 
Myriophyllum sibiricum 100 
Pimephales promelas 300 
Moina macrocopa 312.5 
Rana pipiens 1242 
Myriophyllum spicatam 3300 
Selenastrum capricornutum 5300 
Daphnia pulicaria 6000 
Lemna gibba 6600 
Chlorella vulgaris 8200 
Scenedesmus obliquus 51000 
Navicula pelliculosa 62300 
Anabaena flos-aquae 82000 



 

 

Figure 2. Log-logistic species sensitivity distribution fitted to data of Table 1 using the ssdtools shiny app. 



R- code 

 
 

 

Running the code in Box 1 gives the following output: 

> mle 
$par 
[1]  0.2861793 10.1569461  1.1213885 
 
$value 
[1] -48.70741 
 
$counts 
function gradient  
     118       NA  
 

#PFOS data 
x<-scan()  #  read in data 
0.2936 
4 
7.95 
. 
. 
62300 
82000 
 
 
y<-log(x)  # fit distribution to log of data 
n<-length(x)  # sample size 
 
f<-function(theta){  #  this is the pdf of the ggLogis distribution 
  a<-theta[1] 
  m<-theta[2] 
  s<-theta[3] 
  z<-(y-m)/s 
  g<-log((1+exp(-z))/exp(-z))^(a-1)/(4*s*gamma(a)*cosh(z/2)^2) 
  return(g) 
} 
 

 
ll<-function(theta){  #  this is the log-likelihood function 
  a<-theta[1] 
  m<-theta[2] 
  s<-theta[3] 
  loglik<-sum(log(f(theta))) 
  return(loglik) 
} 
 
theta<-c(0.5,10,1.0)  # initial guess for parameter values 
mle<-optim(theta,ll,gr=NULL,method="Nelder-
Mead",control=list(fnscale=-1),hessian = TRUE) 
V<-solve(-mle$hessian)  #variance-covariance matrix of estimated 
parameters 
se<-diag(V)^0.5  #  extract standard errors of parameter estimates 

 

Box 1.  R-code for fitting ggLogis SSD 



$convergence 
[1] 0 
 
$message 
NULL 
$hessian 
           [,1]       [,2]       [,3] 
[1,] -240.50822 -14.413248  56.851078 
[2,]  -14.41325  -1.925805   1.305431 
[3,]   56.85108   1.305431 -18.644832 
 
> V 
           [,1]      [,2]       [,3] 
[1,]  0.1277794 -0.726718  0.3387383 
[2,] -0.7267180  4.678188 -1.8883329 
[3,]  0.3387383 -1.888333  0.9542885 
 
> se 
[1] 0.3574625 2.1629120 0.9768769 
 
 

A comparison of the fitted ggLogis and regular logistic distributions is shown in Figures  

 

 
Figure 3. Histogram of log-PFOS data with fitted ggLogis distribution (red curve) and regular logistic distribution (blue 
curve) overlaid. 



 
Figure 4. Empirical cdf  of log-PFOS data (step-function) with fitted ggLogis distribution (red curve) and regular logistic 
distribution (blue curve) overlaid. Green horizontal line is at the 0.05 probability level. 

 

5. QUANTILES OF THE ggLogis DISTRIBUTION 

The quantiles of any gamma-generated distribution are readily obtained from the 

definition given by Equation 1. Let pξ be the thp quantile of the gamma-generated distribution 

given by Equation 1 and let ( )ln 1 X ps F ξ = − −  . Thus, 

( )ln 1
1

0

1

0

1( )     
( )

or

1                   
( )

X pF
a t

Y p

s
a t

G t e dt p
a

t e dt p
a

ξ

ξ
 − − 

− −

− −

= =
Γ

=
Γ

∫

∫

    (11) 

It is evident from Equation 11 that s is the thp quantile of a gamma distribution having shape 

parameter a and scale parameter 1, call it pγ . Hence ( )ln 1p X pFγ ξ = − −   which is readily 

solved for pξ (Equation 12). 



( )1 1 p
p XF e γξ −−= −        (12) 

In R, this is a single-line statement:   

qlogis(1-exp(-qgamma(p,shape=mle$par[1],scale=1), 
location=mle$par[2],scale=mle$par[3])) 

where mle$par is the vector of parameter estimates obtained from the code in Box 1. 

Thus, for the PFOS example above, the 5HC is: 

> E<-qlogis(1-exp(-qgamma(0.05,shape=mle$par[1],scale=1)), 
+           location=mle$par[2],scale=mle$par[3]) 
> exp(E)   #  exponentiate to obtain HC5 of untransformed data 
 
[1] 0.1358724 

Thus, we obtain an estimated 5HC of 0.1359 from the ggLogis distribution compared with 

1.05 from the standard logistic distribution.  

We next consider confidence intervals for the estimated xHC . 

6. CONFIDENCE INTERVALS FOR AN HCX ESTIMATED FROM THE 
ggLogis DISTRIBUTION 

Most software tools for performing SSD calculations use bootstrapping to obtain 

confidence intervals for an estimated xHC (Fox et al. submitted). While there is nothing 

inherently wrong with this, depending on the distribution fitted the method can be time-

consuming. When the Hessian matrix is available from the distribution-fitting algorithm (as is 

the case using the code in Box 1), an approximate confidence interval can be constructed 

using the delta-method as described below. 

Let Σ be the xp p  covariance matrix of the parameter estimates Θ̂  for the fitted 

ggLogis distribution where p ( =3 here) is the number of model parameters. The covariance 

matrix of a function ( )ˆh Θ is approximately: 

( ) ( ) ( )ˆ ˆ ˆT
Cov h h h     Θ ≈ ∇ Θ Σ ∇ Θ           (13) 



where ( )∇ ⋅ is the gradient operator. In our case, the function ( )ˆh Θ is given by Equation 

12. Since no closed form expression is available for ( )ˆh Θ , a numerical approximation will be 

used. This can be achieved in R using the grad function from the numDeriv package as 

shown in Box 2. An approximate (1 )100%α− confidence interval for xHC is obtained using 

Equation 14. 

 

, /2x xn pHC t SE HCα−
 ±          (14) 

where , /2n pt α−  is the quantile from a central T-distribution having n-p degrees of freedom 

(p is the number of estimated parameters) and 

xSE HC 
  is obtained as the square root of the 

scalar result in Equation 13. 

 
require(numDeriv) # load required package 
 
# create a function to compute the HCx 
hcx<-function(p,par){ 
   
  E<-qlogis(1-exp(-qgamma(p,shape=par[1],scale=1)), 
            location=par[2],scale=par[3]) 
  return(exp(E)) 
} 
 
# Evaluate the gradient of the hcx function at the mle for the ggLogis  
 g<-grad(hcx,p=0.05,mle$par)  # for the HC5 
 
> g  #  print the gradient vector 
[1]  5.6716675  0.1358724 -1.4725093 
 
#  Now compute the approx. SE of the estimated HCx (Equation 13) 
se<-sqrt((g)%*%V%*%g) 
> se 
          [,1] 
[1,] 0.4934323 
 
# Compute limits of approx. 95% CI using Equation 14. 
 
> UL<- hcx(0.05,mle$par) + qt(0.975,n-3)          # upper limit 
 
> LL<- max(0,hcx(0.05,mle$par) - qt(0.975,n-3))   # lower limit 
 
>  c(LL,UL) 
[1] 0.000000 2.267322 
 

Box 2.  R code to obtain approximate confidence limits for the HCx  



We see from Box 2 the approximate 95% confidence limits for the 5HC are {0; 2.267}. 

Using the ssdtools shiny app to fit a standard logistic distribution to the PFOS data 

resulted in an estimated 5HC of 1.05 with approximate 95% confidence limits of {0.06; 21.1} 

based on 5,000 bootstrap samples. We note that the respective confidence intervals overlap 

and that the ssdtools confidence interval is almost 10x wider than the confidence interval 

from the ggLogis distribution. This situation is not improved much if model averaging of 

the log-logistic, gamma, log-gumbel, and Weibull distributions is used. In this case the point 

estimate of the 5HC is 0.453 with approximate 95% confidence limits of {0.03; 18.7}. 
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